BLOGS

What is data transformation?

July 22, 2022
5 minute read

The question of “what is data transformation” can have a wide array of answers that range from surface level overviews to heavy, deep explorations that require a cohesive understanding of programming languages and best practices. 

But what about a nice happy medium in between those two polar extremes? Many digital marketers don’t want to be bogged down in the minutiae of data warehousing architectures, but they also want answers hefty to sink their teeth into. 

So let’s explore the world of data transformation together. We’ll dive past the surface explanations. But don’t worry — you won’t need a metaphorical submarine, maybe just your favorite imaginary SCUBA gear. 

Here we go!

Data transformation: defined

Essentially, data transformation is any act you perform on collected raw data in order for it to be better and more useful when processed in its next or final destination. 

Let’s explore that a bit further.

Think of your ad performance data from social media platform “X.” Perhaps you’d like to visualize the key performance metrics from the last 6 months. When quickly viewing the raw data, though, you notice that there are some broken cells (or values) due to missing or incorrect data. 

If you were to send this raw data on to your visualization software, your final dashboard would likely be broken in one or more places. In order to avoid this, you need to apply some data transformations in order to remove those broken values or to ensure that the data is accurately sent through. 

Simple enough, right? 

We’re still at surface level in our data transformation exploration, though. To continue our ocean metaphor, here, we are enjoying a nice relaxing snorkel around a reef. Time to plunge a bit deeper. 

shallow end of data transformation

Why data transformation is so valuable

So, why all the fuss about this data transformation idea? Well, for starters, it’s a critical step in broader, more detailed data analysis and maintenance. However, it’s also common sense for modern digital marketers who are running comprehensive campaigns across many different platforms. 

Even Facebook and Google, two of the most popular digital advertising platforms, treat data differently. Whether it’s cross-device conversions, clicks, UTM parameters, attribution, and more, it can be extremely difficult to directly compare performance results between the two platforms using their raw, standard data sets. 

Instead, marketers need to find a way to transform this data so that the various parameters and metrics match each other. This allows you to make easy comparisons between platforms as well as using the combined data to gain higher-level insights from the broader campaign ecosystem.

While we’re going on about Google Analytics, skip down below to see our Funnel Tips episode about everything you need to know about events Google Analytics 4.

 

Beyond ensuring that all of your advertising sources are “speaking the same data language,” it is often worth thinking about the types of data transformations that are useful on a global scale, literally. 

Data transformation makes global campaigns easier to analyze

If your campaign is running across international boundaries, or serves customers in different countries, you will almost certainly need to employ some currency transformations. 

It’s important to be strategic and careful here, though. This is one of those points where you could stay nice and comfy by our metaphorical reef, or you could drift off into the big dark ocean depths. What we mean is that, with currency, you need to factor in current versus historical conversion rates. 

Are you looking at real values? Are your historical values adjusted for inflation? The questions go on, but let’s swim back toward the safety of our reef for a second to talk about a simpler global transformation: time zones. 

Imagine you drop a new sneaker or software product to your markets globally. You may want to launch the products at the same moment, regardless of the time zone in each market. That could be noon in the UK, which would be 7 a.m. in New York. When looking back on your performance numbers, it may be valuable to adjust time zone data to reflect the coordinated global launch. 

Sending transformed data to your target destination

Let’s also not forget one of the most common reasons we see data transformation being implemented. As we covered previously, Google Data Studio is one of the most popular visualization services on the market. It’s robust, solid, and free. 

One of its main limitations, however, is that it can only pull data from a single source. Because of this, we see many of our clients start out their data journey (before joining forces with Funnel) by pulling everything into a massive Google Sheet where they apply a series of data transformations. After all, Data Studio is great at making visualizations, but it's simply not built for transforming and cleaning your data. 

Is data transformation difficult?

There is a reason we picked a deep sea diving metaphor to speak about data transformation. If you are experienced (or have an expert guide) and you are ready to dive deep, there is plenty of room to explore the topic of data transformation. 

deep data transformation

For beginners, it’s best to start with simple transformations, and build from there. Feel free to dip your toe in the shallow end, then begin a short “snorkeling adventure.” As your skills and knowledge improve, you can feel confident in exploring transformation further and deeper while creating a refined data transformation process. 

However, one of the biggest challenges with data transformation is that, at the more complex level, it often requires custom code and even BI teams. Especially when converting and integrating custom data fields, specialized programming languages and logic need to be employed to ensure that every inconsistency is picked up and addressed. 

A common way to achieve this is through regular expressions, or Regex. Think of it as a sort of “find and replace” for your mismatched data. In fact, Alex addressed the topic in one of his Funnel Tips episodes

Types of data transformation

In addition to some of the examples we listed above, here are a few common data transformation techniques and methods:

Translation and data mapping
Splitting
Generalization
Integration
Discretization
Manipulation

 

Translation and data mapping

In this data transformation example, you are simply matching fields from one database to another. One database may use abbreviated country code like USA, MEX, and GRE while another may spell out country names. The data mapping process ensures that those fields match. 

 

Splitting

Think of your data represented in a spreadsheet. Splitting is the process of converting a single column into multiple columns of data points. For instance, if a column consists of full URLs, you may want to split them so that the domain names and slugs are separate.

 

Generalization

It’s typically bad to generalize in polite conversation, but it can be useful in data transformation. It can help to simplify low-level data sets into higher-level categories that are easier to understand. One example may be simplifying the timing of customer activities throughout the day into two categories: morning and afternoon.

 

Integration

Sometimes called aggregation, integration is the process of combining data from different sources to one united view. For instance, you may wish to integrate sales metrics from your brick-and-mortar store with your e-commerce platform. 

 

Discretization

While it may be a bit of a tongue twister, it’s simply the act of combining values into sets of value ranges. This can help to make large numerical data sets a bit more easy to understand and to work with. 

 

Manipulation 

This one is pretty straightforward. Manipulation is the act of changing data to make it more legible and better organized. It can even be as simple as changing the length of decimal values. 

Looking for more?

Data transformation is a big part of why Funnel exists. We are pretty obsessed with it. Well… maybe not obsessed, but we’re really into it. Check out some of the videos and links below to explore the topic further. 

 

The basics of REGEX:

 

Data aggregation in 2 minutes:

 

Events in Google Analytics 4, explained:

Are you trying to figure out how to apply data transformations within Funnel? Great! We have plenty of resources available. Click one of the explainers below, or head to our Knowledge Base for the full listing. 

 

Frequently Asked Questions

What are data transformation tools?

Data transformation tools allow you to process data to ensure it is ready for visualization and analysis. While there are a lot of data transformation tools on the market, we recommend products that are closer to a data hub, which can transform your data, collect it, store it, and send it anywhere it needs to go. 

What is an example of data transformation?

As we mentioned above, some examples of data transformation include mapping, integration, discretization, and more. 

Why is data transformation important?

Data transformation ensures that all of your metrics are uniform, which allows for better analysis and stronger insights.